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Abstract. We present observations of energetic particle flux increases up to 1 MeV at 1 AU, 
which cannot be associated with ordinary mechanisms of particle acceleration, such as 
acceleration at shocks or at the Sun. Such unusual energetic particle events very likely have a 
local origin. Multi-spacecraft observations show that numerous cases of energetic particle flux 
enhancements and spikes correspond to passages of spacecraft through areas filled with 
magnetic islands with a typical width ~0.010.001AU that experience dynamical merging 
or/and contraction. The presence of magnetic islands inside magnetically confined cavities in 
the solar wind may lead to local particle energization, especially in the case when the particles 
have already been pre-accelerated to keV energies, for example, at shocks or due to magnetic 
reconnection at the heliospheric current sheet. We consider different magnetic configurations 
that provide favourable conditions for both the appearance of small-scale magnetic islands and 
their confinement.  

1.  Introduction 
Small-scale magnetic islands with a typical size of l ~0.01 AU or less are commonly observed in the 
solar wind plasma at 1 AU. The crossing of a certain magnetic island lasts from minutes to hours, but, 
in contrast to large-scale magnetic islands (or magnetic clouds), small-scale magnetic islands exhibit 
some grouping. Areas filled with small-scale magnetic islands, sometimes called flux ropes, can be 
observed for days [1]. The interplanetary magnetic field (IMF) strength increases and the plasma 
density decreases inside magnetic islands. The main features of these structures are a rotating 
magnetic field and the presence of small-scale current sheets at their borders.  

Magnetic islands are often related to magnetic reconnection. The probability of their observation 
increases as the heliospheric current sheet (HCS) is approached [1], which is not surprising. Indeed, 
there are some signatures of magnetic reconnection that re-currently occur in many places on the HCS 
and determine specific properties of the plasma and magnetic field in the vicinity of the HCS [2].  



 
 
 
 
 
 

Recently, we showed that magnetic islands near the HCS can experience merging and contraction 
[3], which may serve as a source of particle acceleration (as discussed in theoretical studies [4, 5, 6]). 
Magnetic island merging dominates near the HCS if it is undisturbed by high-speed flows or 
corotating interaction regions (CIRs). A specific rippled profile of the HCS confines magnetic islands 
and forms a tokamak-like structure that provides the possibility of additional energization of pre-
accelerated particles [3]. Such an approach solves the problem of hypothetical low effectiveness of 
particle acceleration directly at 1 AU. Particle acceleration by magnetic island dynamics seems to play 
a significant role, because some crossings of the HCS are associated with energetic particle flux 
enhancements up to 1 MeV, which can be observed for many hours around the sector boundary 
crossing. We supposed that the energy gained by particles depends both on the reconnection rate and 
the local profile of the HCS. The reconnection rate increase, which produces more magnetic islands, 
may occur due to the impact of interplanetary coronal mass ejections (ICMEs) or corotating 
interaction regions (CIRs). The small-scale wavy, rippled and distorted HCS confines magnetic islands 
and accelerate particles more effectively than the plain or large scale wavy-shaped HCS. The 
combination of these features can produce strong particle acceleration. 

Contraction of magnetic islands can take place everywhere, because the solar wind is a dynamic 
medium, but this process is most effective during HCS-ICME interactions. In this case there is (i) 
strong compression: (ii) plasma confinement between the ICME front and the HCS, and (iii) 
intensification of magnetic reconnection at the HCS due to its interaction with the ICME. As a result, 
one can observe strong energetic particle flux enhancements, sometimes comparable with energies 
typical for strong solar energetic particle SEP events [3].  

The way to identify small-scale magnetic islands was shown in [1, 7]. The Grad-Shafranov 
reconstruction of flux ropes can help with understanding the local structure of magnetic fields (see 
ftp://ftp.iwf.oeaw.ac.at/pub/moestl/publicgscode/GS_handbook_june_2014.pdf and [8]), but it has 
some limitations, is not easy to perform, and sometimes is not exact. At the same time, a hodogram 
method [3] can help by providing a quick visual inspection of the analyzed events, simply using 
regression plots to reveal the IMF rotation inside magnetic islands. This supposes that if the rotation is 
obvious, one can see a half-circle in one of the planes Br-Bt, Bt-Bn or Br-Bn during the crossing of one 
island. Here and below, indices r, t and n correspond to radial, tangential and normal directions in the 
RTN coordinate system. At 1 AU, r = ̶ x in the GSE system, which is related to the ecliptic plane. The 
crossing of two islands or a chain of islands usually gives a full circle or many circles. The anti-
correlation of a pair of the IMF components in combination with changing correlation between the 
density and the IMF during several hours may indicate a passage through the chain of magnetic islands 
as well.  

We provide here support for theory and simulations [4, 5, 6], showing signatures of particle 
energization related to the occurrence of magnetic islands inside specifically confined regions of 
expanding solar wind. An explanation of observed time-intensity profiles of energetic particle fluxes 
through particle energization in merging/contracting magnetic islands for the case of the HCS-ICME 
interaction as well as for the crossing of the isolated HCS can be found in the recent publication [3]. In 
this work we will show cases of HCS-CIR and unusual HCS-ICME interactions. The shock fronts of 
CIRs which have fully developed beyond ~ 2 AU have been typically considered as the main source of 
energetic particle enhancements observed at 1 AU, with the particles, associated with the Reverse CIR 
shock beyond the spacecraft to be streaming towards the Sun [9, 10]. 

Magnetic islands are often observed in the turbulent area behind interplanetary shocks, which may 
represent a source of additional acceleration of particles in this area. Theoretical aspects of this 
phenomenon are considered in [4, 6]. Observations show that interplanetary shocks are usually 
accompanied by current sheets, and the shock itself always coincides with a sharp change in the IMF 
clock (azimuthal) angle. We will discuss a case when an interplanetary shock was observed close to 
the HCS and smaller current sheets.  



 
 
 
 
 
 

As a whole, the work is aimed at showing the importance of taking into account the local structure 
of the IMF and the presence of dynamical small-scale magnetic islands, which are poorly-investigated 
natural accelerators of particles at the Earth’s orbit. 

2.  Observations of energetic particle flux enhancements associated with the occurrence of small-
scale magnetic islands  
In our previous study [3] we showed that energetic particle flux increases are observed simultaneously 
with the occurrence of magnetic islands near the HCS. Here we will extend our multi-spacecraft study 
to cases when magnetic islands occur in between magnetic walls (represented by current sheets) and 
plasma boundaries (CIRs, ICMEs, shocks).  

The local configuration of the IMF at 1 AU determines acceleration processes to a higher degree 
than is usually expected [3]. Therefore, it is important to analyse the whole picture of the ICME (or 
CIR) interaction with the HCS. The SMEI (Solar Mass Ejection Imager) can provide us with the 
necessary nearly whole sky data for the period from 2003 to 2011. A detailed description of the 
restored velocity/IMF plots obtained from STELab interplanetary scintillation data as well as the solar 
wind density plots from SMEI will be given below. The role of current sheets in the confinement of 
magnetic islands and the impact of high density (or the total pressure) on observed time-intensity 
profiles of energetic particle fluxes will be discussed as well. 

 

Figure 1. An increase in ion flux with energies up to 
500 keV before the CIR as measured by STEREO A 
and STEREO B. 

2.1.   The HCS – CIR interaction 
Let us explore the role of local CIR-associated particle acceleration on the formation of time-intensity 
profiles of suprathermal particle fluxes. We investigate whether the bounding of HCS- associated 



 
 
 
 
 
 

magnetic islands by the HCS from one side and the CIR front from the other (which also contains 
local current sheets) may produce significant particle acceleration. 

The energetic particle flux increases in August 2007 observed by the STEREO pair separated by 27 
degrees (figure 1) were analyzed in [11]. These were not classical SEP events due to flares or 
acceleration at the ICME-related shock, but flux enhancements related to CIRs. The interesting point 
is that energetic particle flux enhancements were observed both before the first CIR’s approach and 
between the two CIRs. The CIRs originated from (1) a long-lived low-latitude coronal hole, and (2) 
weak CMEs that did not hit the Earth directly (details can be seen in 1.avi and 2.avi). A classic 
explanation of the event, at which particles are supposed to be accelerated at reverse/forward shocks 
behind the Earth, was given in [11].  

 

 

Figure 2. Daily snapshots of the solar wind density from the Sun to the 
Earth as observed by SMEI for the time period corresponding to Figure 1. 
The energetic particle flux profiles shown in Figure 1 are determined by 

interaction of the coronal hole flow and ICMEs that produce CIRs 
detected by the STEREO pair. The Earth’s orbit is shown with the black 
ellipse, the Earth is the blue dot, and the Sun is the red thick dot in the 

centre. See 2.avi movie. 
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We are mainly interested here in the nature of the ion flux enhancements that occurred before the 
first CIR, which was not examined in [11]. The leading edge of the CIR, indicated by vertical lines in 
Figure 1, was observed in sequence by STEREO B and STEREO A. The separation angle between the 
STEREO pair was not very large, but, in contrast to typical SEP events, CIR-related energetic particle 
increases were detected by STEREO B and STEREO A with a time delay of many hours that 
corresponded to the rotation of the structure from the first spacecraft to the second one. Therefore, the 
observed changes in time-intensity energetic particle flux profiles were apparently determined by local 
configurations of the IMF. 

A spatial distribution of the IMF from the Sun to the Earth’s orbit may be reconstructed for the 
investigated period from the analysis of ground-based interplanetary scintillation data from the Solar 
Terrestrial Environment Laboratory (STEL), because the velocity profile approximately corresponds 
to the picture of the IMF spatial variations (see 1.avi). One can find the corresponding 3D 
tomographic reconstructions performed with a 102-minute cadence and resolutions of 0.05 AU in 
height and 1ox1o in latitude and longitude on the page of The Solar Mass Ejection Imager (SMEI): 
http://smei.ucsd.edu/new_smei/data&images/data&images.html. SMEI itself viewed nearly the whole 
sky in visible light and provided the solar wind density profiles (for example, see 2.avi). Generally, the 
solar wind density and velocity/IMF plots show different patterns: the plasma flows nearly radially 
outward from the Sun (2.avi), and the velocity/IMF pictures exhibit both rotation and expansion 
(1.avi).  

During the period shown in figure 1, long-lived low latitude coronal holes were found side by side 
with active regions that produced weak coronal mass ejections (see the corresponding images at 
http://spaceweather.com/ and CME movies at http://sidc.oma.be/cactus/catalog.php). As a result, the 
flows interfaced in the solar wind and formed a sequence of CIRs and confined regions having delta 
(or nabla) shapes.  

 

 

Figure 3. STEL measurements 
of the solar wind speed. -
shape cavities in the solar 
wind. See the 1.avi movie.  

 Figure 4. SMEI measurements 
of the solar wind density 
profiles that correspond to the 
speed/IMF cavities in figure 3. 
See the 2.avi movie. 

 The -shape IMF cavities can be seen in the 1.avi movie. Most streams are flowing from low-
latitude coronal holes and sometimes face weak ICMEs. The streams of both kinds have different 
shapes, different speeds and different ways of propagation from the Sun to 1 AU. ICMEs propagate 
nearly radially and look like expanding balls (see figure 2), and streams from coronal holes resemble 
expanding tubes. As a result, at least three unusual -shape IMF structures can be seen between the 
Sun and the 1 AU sphere at the same time (figure 3). Note that the upper side of  is closer to the Sun 
than the narrow part, in contrast with a common view of the flows as V-shape structures that expand 
from the Sun [11].  

Density
Velocity/ IMF 



 
 
 
 
 
 

The borders of each cavity shown in figure 3 are formed by the HCS and current sheets that belong 
to two different CIRs - passed and arriving ones (see the 1.avi movie and figure 2). As we show 
below, such a magnetic cavity can confine dynamically changing magnetic islands, which results in 
local particle acceleration.  

 

Figure 5. STEREO B observations showing the HCS crossing 
before the CIR. From top to bottom: energetic ion flux 

spectrogram, the IMF clock (azimuth) angle, the solar wind 
speed, the density, the plasma beta, the total (green) and magnetic 
(red) pressure.  Energetic particle flux enhancements are seen in 

between the HCS (yellow stripe) and the CIR (pink stripe) as well 
as between current sheets inside the CIR (vertical lines). 

 Figure 2 shows SMEI measurements of the solar wind density in the visible light. SMEI was 
designed to observe ICMEs. It can show dense borders of ICMEs or flows from coronal holes (which 
are stream interaction regions – SIRs or CIRs). It cannot look inside ICMEs until they crossed the 
Earth orbit. CIRs from coronal holes are stable and conic-like, but ICMEs (even from weak CMEs), 
move faster, and produce ball-like “CIR-shells”. Sometimes an ICME can move slower than plasma 
inside a coronal hole flow, but since the latter has a permanent source at the Sun, the entire picture 
looks like the ICME moves against the background of a stable slowly rotating stream. The changing 
density is partially responsible for what we see in blue velocity/IMF pictures (compare figure 3 and 
figure 4). On the other hand, velocity determines the IMF shape, so the whole picture of a particular 
event can be achieved by analysing both the combination of density and velocity plots. 

 

HCS CIR 

1    2    3        4 



 
 
 
 
 
 

Let us examine in detail the pre-CIR energetic flux enhancement shown in figure 1. Subsequent 
crossings of the HCS and the CIR are shown in figure 5. The IMF changed its direction approximately 
10 hours before the CIR arrival (see the corresponding changes of the IMF clock (azimuth) angle). 
This was accompanied by a very high plasma beta and an increased plasma density in a background of 
low velocity. The yellow stripe shows the plasma sheet. The pink stripe indicates the CIR body. 
STEREO B detected a weak shock first, followed by significant density and velocity increases. The 
upper panel shows the energy of omni-directional ions (spectrogram).  

Remarkably, the energetic ion flux enhancements occurred between the HCS and the CIR. Spikes 
in the spectrogram correspond to local magnetic islands. Even more remarkable is that the maximum 
increases in the flux are observed not exactly at the CIR-related shock, but in between local current 
sheets. Most strong current sheets inside the CIR are identified by numbers.  
 

Figure 6. Hodogram of the IMF vector rotation in 
the Bn-Br plane during the period of observations 
from the HCS crossing to the CIR crossing. 1-min 
STEREO-B IMF data, nT.   

The rotation of the IMF vector inside magnetic islands located in the magnetic cavity between the 
HCS and the first strong CIR-related current sheet is shown in figure 6. In figure 5, one can see that 
the second prominent increase of the energetic ion flux occurs between the second and the third 
current sheet inside the CIR.  

 

Figure 7. The IMF and density properties during the ion flux increase 
observed between current sheets 2 and 3 (see figure 5). Left figure, 

from top to bottom: three components of the IMF, the total B and the 
solar wind density. The right panel: similar to figure 6, but for R-T 

and R-N planes. High resolution data from STEREO B. 

 The behaviour of three IMF components, the total B and the solar wind density inside the magnetic 
islands as well as in the current sheets is shown in the left panel of figure 7. In the right panel of 
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Figure 7 we plot the hodogram of the IMF that shows the magnetic field vector rotation in two planes 
(Br-Bt  and Bn-Br) inside two relatively large magnetic islands identified by the green and blue shading. 
The current sheets numbered 2 and 3 in figure 5 are shown in detail and marked with yellow stripes in 
figure 7. The magnetic islands are separated by a small-scale current sheet as well (the dark blue 
stripe).  

The ACE spacecraft was located at the Lagrangian point in front of the Earth, and the separation 
angle with STEREO B was of 12. ACE detected the passage of the whole structure several hours 
later. The HCS crossing, which is shown by the yellow stripe in figure 8, lasted longer in comparison 
with STEREO B, but the energetic ion flux behaviour was very similar. There was an area filled with 
magnetic islands in between the HCS and the first current sheet that belonged to CIR (line 1 in figure 
8). An ion flux increase is observed in this area. Energetic ion fluxes measured by LEMS 120 on ACE 
show an increase many hours earlier than the CIR arrival at the Earth. The maximum is related rather 
to current sheet 1 than to the CIR shock.  

STEREO A detected the CIR later than STEREO B, but the ion flux increase observed before the 
CIR leading front is even clearer and lasts longer (see figure 1). The bottom panel of figure 1 shows 
the omni-directional ion fluxes. However, if looked at more closely, the ion flux exhibits strong 
anisotropy. The upper panel of figure 9 shows fluxes of ions directed from the Sun. The bottom panel 
shows variations of the sunward ion flux. The HCS/plasma sheet crossing is indicated by the yellow 
stripe and the CIR shock is marked with the vertical line.  

 

Figure 8. ACE observations during the event shown in figure 5. 
Left panel: energetic particle fluxes and the IMF components. 
Right panel: a hodogram of magnetic field rotation in the area 
between the HCS and the CIR (similar to figure 6 and figure 7, 

right panel).  
 The time-intensity ion flux profile is similar to that discussed above: an energetic ion flux increase 

is observed between the HCS and the leading edge of the CIR. It is clear that the first increase in 
energetic ion flux is due to 101-137 keV anti-sunward ions. This would not be possible if the particles 
originated from the CIR forward shock, as the dominant diffusive shock acceleration paradigm asserts, 
given that the shock is located at roughly 2-3 AU. Sunward accelerated ions, which could be from the 
forward shock, were detected many hours later. The interesting point is that the maximum sunward ion 
flux occurs after the shock crossing, which may be well related to results discussed in [6].  
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In summary, for the case that there are magnetic islands in the region in between the HCS and the 
CIR, the HCS-CIR interaction may produce energetic particle flux enhancements comparable with 
those observed during solar energetic particle (SEP) events. In the case discussed here, the magnetic 
islands were confined by the HCS and CIR-associated current sheets and compressed from at least one 
side by the approaching CIR. 

 

 

Figure 9. STEREO A observations of energetic particle flux 
enhancement before the CIR arrival. There was an approximately one 

day delay between the arrival of accelerated anti-sunward and 
sunward ions at the Earth. 

. 

2.2.  The HCS-ICME interaction.  
The HCS-CIR case examined above is rather similar to the HCS-ICME case discussed in [3]. The 
observational evidence points to the same underlying paradigm for particle acceleration that is favored 
because particles and magnetic islands are spatially confined by the HCS the approaching CIR or 
ICME. Two cases of the HCS-ICME interaction were considered in [3], terms of possible scenarios 
[12] of (i) the pre-existing HCS and (ii) the post-ICME crossing of the HCS, which was quickly 
restored after the passage of the ICME.  

Sometimes we can observe at 1 AU very complicated cases with multiple CMEs that impact the 
HCS so strongly that it can no longer possesses a simple anymore, being rippled, and disrupted to a 
high degree or reconnected along the leading front of ICME. In STEL 3D velocity/IMF plots this 
appears as a temporary absence of the HCS in some places or the presence of multiple current sheets 
that resemble rose-leaves (see the 3.avi movie). Let us consider cases when the HCS structure was 
very complicated due to a sequence of strong ICMEs that separated the HCS into many single current 
sheets.  

The list of ICME events observed by STEREO A and B can be found at http://www-
ssc.igpp.ucla.edu/forms/stereo/stereo_level_3.html . Event number 6 is an ICME detected by STEREO 
A on November 19, 2007. The magnetic obstacle (~ flux rope) starting time is indicated as 22:00 UT 
(the left vertical line in figure 10), and the end time is on November 21, 2007, 3:17 UT (the right line 
in figure 10). This period approximately corresponds to the growth and the main increase in the total 
pressure (figure 10, bottom panel). 

The classification of the event as a clear ICME is arguable, because the velocity increase occurs 
after the “official” end of the magnetic cloud identified by Lan Jian, which is not typical for ICMEs, 

HCS 
CIR 



 
 
 
 
 
 

though the IMF rotation in the magnetic cloud is very clear. However, one can see that neither the very 
high solar wind density nor the total pressure enhancement is associated with the energetic particle 
flux increase. On the contrary, two strong energetic ion flux enhancements are observed both before 
and after the passage of the large ICME-associated magnetic cloud characterised by the increased IMF 
strength and the solar wind density.  

The first enhancement is most interesting, because there is absolutely nothing remarkable in the 
behaviour of parameters, which are usually considered to be responsible for particle acceleration: the 
solar wind speed decreases after the passage of the previous ICME, and there is no strong density 
increase during the energetic particle flux enhancements in different energy ranges as figure 10 shows. 
At the same time, the clock angle is changing frequently (the third panel from the top), which indicates 
the presence of multiple current sheets.  

 

Figure 10. Case of a rippled HCS that 
surrounded an ICME. The energetic particle 
flux enhancements are observed not during 

the ICME, but in the areas filled with 
magnetic islands. 

 



 
 
 
 
 
 

 

Figure 11. Rotation of the IMF that coincides with two strong energetic 
particle flux enhancements shown in figure 10 . STEREO A 1-min data. 

We find that the observed frequent change of the IMF direction is due to the occurrence of multiple 
ripples on the HCS (see the 3.avi movie). According to the 3.mpeg movie, the ICME was surrounded 
by the strongly disrupted and rippled HCS. The occurrence of small-scale magnetic islands inside the 
ripples is obvious from hodograms shown in figure 11.  

Figure 11a corresponds to the first energetic ion flux increase seen in figure 10, and figure 11b 
shows the IMF vector rotation during the second energetic ion flux increase, which occurred after the 
passage of the ICME-related magnetic cloud. These enhancements were obviously local, because 
STEREO B detected them with some time shift, and the time-intensity profiles of the energetic ion 
fluxes were slightly different (not shown). 

Do summarize, we emphasize again the importance of local IMF structure for confining and 
accelerating particles in the solar wind. In this case, particles accelerated at the ICME-related shock 
most likely could not propagate freely in the solar wind, being trapped by magnetic islands and 
confined by a very complicated HCS configuration. As a result, at 1 AU the picture became 
“inverted”: areas where energetic ion flux enhancements are usually observed had no SEPs, but the 
surrounding HCS-related magnetic islands were full of accelerated particles. 

2.3.  The HCS-shock interaction  
Interplanetary shocks (ISs) at 1 AU are usually associated with SIRs/CIRs or ICMEs, as seen from any 
shock list. An example can be found in paragraph 2.1. Thus ISs are followed by structures that may 
impact the HCS and change its configuration. This increases the reconnection rate at the HCS, 
produces more magnetic islands in some areas of the solar wind and, potentially, leads to local particle 
acceleration. The HCS is sensitive to the passage of an isolated interplanetary shock as well. 
Theoretically, the HCS is transparent for interplanetary shocks. At the same time, shocks may disrupt 
the HCS [13].  

Observationally, it appears that the HCS tries to keep its form, but, being compressed by an 
interplanetary shock, it bends, moves forward and is then restored the shock passes. This process is 
clearly seen in STEL movies. If a spacecraft is close to the HCS, it detects the HCS crossing first, and 
then the IS crossing. The HCS restoration is seen as a second crossing of the HCS some time after the 
CS passage. This process has been poorly investigated observationally, although some simulations 
have been performed [13, 14]. Many questions regarding the state of the solar wind and energetic 
particles after IS passage throughout the HCS remain unanswered.  

We know that ISs are followed by a turbulent wake that contains numerous magnetic islands [6, 14, 
15]. If this is the case, the highly disturbed HCS may (i) retain the magnetic islands that are formed 
downstream of the IS, and (ii) produce more magnetic islands because of the increased reconnection 
rate. In any event, the traversal of the HCS by an IS may result in a prolonged highly turbulent state of 
the solar wind behind the shock (much more prolonged than in the case of an IS passage that does not 
interact with the HCS). An example of an IS interacting with the HCS is presented in figure 12.   



 
 
 
 
 
 

STEREO A observed the crossing of an isolated interplanetary shock at 9:18 UT on May 19, 2008 
(see the STEREO shock list at http://www-ssc.igpp.ucla.edu/forms/stereo/stereo_level_3.html). It is 
marked in figure 12 by the black vertical line. The solar wind density and speed indicate any presence 
of a structure that could contaminate the case significantly, except for the presence of the HCS. The 
main crossings of the HCS are indicated by the vertical red lines, and the areas of fluctuating IMF 
direction, which, similar to previous events, may be treated as the plasma sheet, are identified by 
yellow stripes.  

The HCS crossing occurred several hours before the IS arrival at 1 AU. One can see the clock 
angle changes sharp and the plasma beta is very high (more than 100) during the HCS crossing. The IS 
pushed the HCS back and the spacecraft found itself again in the same sector as before the HCS 
crossing. The restoration of the HCS was detected several hours later.  

 

Figure 12. Plasma and magnetic field parameters for the case of the 
HCS-shock interaction (similar to figure 10). The shock is identified 
by the black line, and the main crossings of the HCS are indicated by 

red lines. STEREO A data. 
The behaviour of suprathermal electrons (pitch angle distribution function PAD), the energetic ion 

dynamic spectrum, and the IMF component variations during the time period shown in figure 12 are 
illustrated in figure 13. The upper panel of figure 13 shows the running correlation coefficient between 
the tangential Bt and the vertical Bn components of the IMF (the time-window where the coefficient is 
calculated is 180 minutes, and the consequent shift is 1 minute).  

The PAD function shows a wide area of fluctuations in the suprathermal electron propagation 
direction and a prolonged flux dropout that coincides with the HCS/plasma sheet crossing. It was 
discussed before [3] that such strong pitch angle scattering in the vicinity of the HCS is a signature of 
the occurrence of magnetic islands. The most prominent rotation of the IMF vector is observed in the 
T-N plane, and the negative correlation coefficient between Bt and Bn shows an approximate position 
of the islands along the time axis. It should be noted that periods of strong negative correlation 
coefficient coincide with the dropouts and periods of multidirectional propagation of suprathermal 
electrons.  
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Figure 13 clearly shows that the energetic ion fluxes increase most significantly behind the shock. 
Moreover, the maximum occurs exactly during the period of long-lasting electron flux dropout and 
pitch-angle direction isotropy observed after the second HCS crossing. This period is characterised by 
the presence of HCS-associated magnetic islands and rotating magnetic field as seen in figure 14.   

This example shows that many unusual energetic particle events may be related to the interaction 
of the IS and the HCS due to the ability of the disrupted HCS to produce and confine magnetic islands 
in its vicinity. All the effects discussed in the theoretical models [4, 5, 6, 16] may be applied to this 
case, but the details of the HCS-shock interaction and peculiarities of particle acceleration that occur 
during this rather long process should be investigated further. 

 

Figure 13. From top to bottom: The running 
correlation coefficient between Bt-Bn components, 
the suprathermal electron pitch-angle distribution 

function (spectrogram), the energy of ions 
(spectrogram). The main energetic ion flux 

enhancement occurs behind the shock (black line), 
which coincides with the electron heat flux dropout 
and corresponds to the largest magnetic island near 

the HCS. Measurements from STEREO A. 
 



 
 
 
 
 
 

 

Figure 14. Hodogram of the magnetic field rotation behind the 
shock shown in figures 12 and 13. 

3.  Discussion and summary 
In this case-study paper, we have shown examples of energetic particle enhancements observed near 
the Earth orbit that cannot be easily explained in terms of the dominant paradigm for the acceleration 
of particles to keV-MeV energies in the solar wind. The commonly accepted view for accelerating 
particles to these energies includes acceleration either at shocks or at the Sun. In both cases this occurs 
far from 1 AU, so an observer will see merely the result of various distant processes. However, 
numerous discrepancies between observations and the theoretical perspective stimulated us to seek 
other mechanisms that could explain energetic particle flux enhancements, as a result of local 
processes that occur directly at 1 AU and that can be traced by different spacecraft.  

The application of a theory for particle energization by magnetic islands through their dynamical 
compression and merging [3, 4, 5, 6, 16] to observations introduces the possibility for solving many 
problems that traditionally arise in addressing the particle acceleration in the solar wind. Recently, we 
have shown that the heliospheric current sheet is a place near which magnetic islands permanently 
exist and evolve, experiencing both contraction and merging [3]. Both processes may occur 
simultaneously, but the dominant evolution depends on the local IMF configuration and such 
circumstances as approaching ICMEs, interplanetary shocks or CIRs. All shown examples of the HCS 
interaction with various structures suppose strong compression of magnetic islands either locked 
between two current sheets (the HCS and the strongest current sheet inside the ICME or the CIR) or 
produced by the IS impact.  

In summary, the presence of the HCS near ICMEs, CIRs and ISs increases the probability of 
observing energetic particles accelerated up to 1 MeV.  

(i) We have found evidence for significant particle energization in the -shape magnetic 
cavity formed due to a stream interface. Single-point measurements show energetic ion 
flux enhancements that occur in an area filled with magnetic islands in between the HCS 
and the strongest current sheet inside the CIR.  

(ii) Acceleration of particles to keV-MeV energies appears to occur inside CIRs as well if there 
are magnetic islands in between CIR-associated current sheets. 

(iii) An increased solar wind density/total pressure is not a factor that determines strong particle 
acceleration (as seen from the HCS-ICME interaction case). 

(iv) We confirmed that the occurrence of magnetic islands near the heliospheric current sheet 
results in electron pitch-angle scattering and prolonged heat flux dropouts. 

(v) The most intensive energetic ion flux enhancements are observed not exactly at 
interplanetary shocks, but somewhere behind them. The maximum energetic ion flux 
increase is associated with current sheets surrounded by magnetic islands in the CIR case 
and with the post-shock restoration of the HCS and following magnetic islands in the case 
of an isolated shock.  

(vi) The presence of the HCS makes the turbulent area behind the interplanetary shock wider 
because it keeps and additionally produces magnetic islands in its vicinity.  
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