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ABSTRACT

Aims. In this work we study the evolution of an electron beam injected into the solar atmosphere.

In particular we focus on the heating produced by the precipitating electrons. The influence of

converging magnetic field with different spatial profiles is compared. Time evolution of short

electron impulses with different initial distributions is studied.

Methods. The time dependent Fokker-Planck equation for the electrondistribution in the beam

was numerically solved using the summary approximation method.

Results. Previously studied approximations of the magnetic field profile are found to be ineffec-

tive. However, the magnetic field models proposed here can influence precipitating electrons and,

thus, reduce the heating produced by them. It was also found that short electron impulses injected

into the atmosphere can produce hard X-ray bursts with the timescales observed earlier during

solar flares.

Key words. Sun: atmosphere – Sun: flares – Sun: X-rays – Scattering – Radiation mechanisms:

non-thermal – X-rays: bursts

1. Introduction

Observations of solar flares in hard X-rays provide vital information about scenarios, in which ac-

celerated electrons gain and deposit their energy into flaring atmospheres. In recent years the theory

describing the generation of bremsstrahlung emission has been significantly progressed in many

directions by improving the mechanisms for emitting this radiation, e.g. considering relativistic

bremsstrahlung cross-sections (Kontar et al. 2006), taking into account various aspects of the photo-

spheric albedo effects while deriving mean electron spectra from the observedbremsstrahlung pho-

ton spectra (Kontar et al. 2006). On the other hand, substantial improvements were also achieved in

the solutions of a direct problem of electron precipitationinto a flaring atmosphere by taking into

account different mechanisms of electron energy losses: Coulomb collisions (Brown 1971; Brown

et al. 2000) combined with the deceleration by the self-induced electric field (Zharkova et al. 1995;

Zharkova & Gordovskyy 2006) in flaring atmospheres with strong temperature and density gradi-

ents derived from the hydrodynamic solutions (Somov et al. 1981, 1982; Nagai & Emslie 1984;

Fisher et al. 1985c,b,a).
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Substantial progress in the quantitative interpretation of hard X-ray emission is made in the

recent years by using high temporal and spatial resolution observations carried out by the RHESSI

payload (Lin et al. 2003). The latter provides the locationsand shapes of hard X-ray sources on the

solar disk, their temporal variations and energy spectra evolution during the flare duration (Holman

et al. 2003; Krucker et al. 2008). These observations are often accompanied by other observations

(in microwaves (MW), EUV and optical ranges) which revealeda very close temporal correla-

tion between HXR and MW, UV and even optical emission (see forexample, Kundu et al. 2004;

Fletcher et al. 2007; Grechnev et al. 2008). This highlighted a further need for the improvements

of electron transport models, which can simultaneously account both temporarily and spatially for

all these types of emission.

The RHESSI observations of double power law energy spectra with flattening towards lower

photon energies (Holman et al. 2003), which leads to the soft-hard-soft temporal pattern of the

photon spectra indices below 35 keV (Grigis & Benz 2006), highlighted a role in their formation of

the self-induced electric field (Zharkova & Gordovskyy 2006). The authors considered a stationary

beam injection and naturally reproduced such the spectral flattening by electron deceleration in the

electric field, induced by beam electrons themselves. The flattening was shown to be proportional to

the initial energy flux of beam electrons and their spectral indices (Zharkova & Gordovskyy 2006).

Then the soft-hard-soft pattern in photon spectra above canbe easily reproduced by a triangle

increase and decrease of the beam energy flux in the time interval of a few seconds, which is often

observed as by RHESSI (Lin et al. 2003), so by the previous SMMmission (Kane et al. 1980).

Furthermore, numerous observations of solar flares by SMM, TRACE and RHESSI suggest that

the areas of flaring loops decreases and, thus, their magnetic field increases with depth of the solar

atmosphere (Lang et al. 1993; Brosius & White 2006; Kontar etal. 2008). This increase of magnetic

field can act as a magnetic mirror for the precipitating electrons forcing them to return back to the

source in the corona, in addition to self-induced electric field.

In the present paper we propose two models of the magnetic field variations with depth. One

model is a fitting to the measurements of the magnetic field in the corona (Brosius & White 2006)

and chromosphere (Kontar et al. 2008), another shows the exponential increase of magnetic field

from the corona to the upper chromosphere while remaining a constant in the lower chromosphere.

The outcome is compared with the two other models proposed earlier: the first one (Leach &

Petrosian 1981) where the authors assumed that the magneticcolumn depth scale∂ ln B/∂s is con-

stant implying the exponential magnetic field increase witha column depth and the second one

(McClements 1992) considering a parabolic increase of the magnetic field with a linear depth.

Also the temporal intervals of impulsive increases of HXR emission vary from very short (tens

of milliseconds (Kiplinger et al. 1983; Charikov et al. 2004)) to tens of minutes often observed

by RHESSI (Holman et al. 2003). This encourages to revise theelectron transport models and to

consider solutions of a time-dependent Fokker-Planck equation for different timescales of beam

injection (milliseconds, seconds and minutes). The electron transport, in turn, can slow down also

by anisotropic scattering of beam electrons in this self-induced electric field enhanced by their

magnetic mirroring in converging magnetic loops. The further delay can be caused by the particle

diffusion in pitch angles and energy which can significantly extend the electron transport time into

deeper atmospheric layers where they are fully thermalised.
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We also apply the time dependent Fokker-Planck equation in order to compare the solutions for

electron precipitation for stationary and impulsive injection and their effect on resulting hard X-ray

emission, ambient plasma heating for different parameters of beam electrons. We also investigate

these Fokker-Planck solutions for the different models of a converging magnetic field by taking into

account all the mechanisms of energy loss (collisions, Ohmic losses) and anisotropic scattering but

without diffusion in energy.

The problem is formulated in Sect. 2 and the method of solution is described in Sect. 3. The

stationary injection into flaring atmosphere with different magnetic field convergence and colli-

sional plus Ohmic losses with anisotropic scattering is considered in Sect. 4 and the impulsive

injection for short timescales below tens milliseconds is considered in Sect. 5. The discussion and

conclusions are drawn in Sect. 6.

2. Problem formulation

2.1. The Fokker-Planck equation

We consider a one-dimensional beam of high energy electrons, that is injected into solar atmo-

sphere. The beam electron velocity distributionf , as a function of timet, depthl, velocity v and

pitch angle between the velocity and the magnetic fieldθ, can be found by solving the Fokker-

Planck equation (Diakonov & Somov 1988; Zharkova et al. 1995)

∂ f
∂t
+ v cosθ

∂ f
∂l
− eE

me
cosθ

∂ f
∂v
− eE

mev
sin2 θ

∂ f
∂ cosθ

=

1
v2

∂

∂v

(

νv3 f
)

+ ν
∂

∂ cosθ

(

sin2 θ
∂ f

∂ cosθ

)

+
v sin2 θ

2
∂ ln B
∂l

∂ f
∂ cosθ

,

(1)

where the collisional rateν is given by

ν = np(l)
2πe4 lnΛ

m2
ev3

, (2)

E is the self-induced electric field,B is the background magnetic field,np(l) is the density of the

ambient plasma, lnΛ is the Coulomb logarithm,e andme are the electron charge and mass respec-

tively. In our study we assume that the Coulomb logarithm is constant: lnΛ ≈ 20.

Let us introduce the following dimensionless variables:

τ = t
2πe4n0 lnΛ
√

2meE3/2
0

, (3)

s = ξ
πe4 lnΛ

E2
0

, (4)

z =
E
E0
=

mev2

2E0
, (5)

µ = cosθ, (6)

ε = E E0

2πe3n0 lnΛ
, (7)

n =
np

n0
(8)

whereξ is the column depth,

ξ =

l
∫

0

np
(

l′
)

dl′, (9)
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Fig. 1: Density and temperature of the ambient plasma calculated by hydro-dynamical model

(Zharkova & Zharkov 2007) for different beam’s energy fluxF0 and power law indexγ of the

beam electron distribution (see Eq. (15)).

E0 = 12 keV is the lower cut-off energy andn0 = 1010 cm−3. Eq. (1) in dimensionless variables

takes the form

∂ f
∂τ
+ n
√

zµ
∂ f
∂s
− 2εµ

√
z
∂ f
∂z
− ε1− µ2

√
z

∂ f
∂µ
=

n
1
√

z

∂ f
∂z
+ n

1− µ2

2z3/2

∂2 f
∂µ2
− n

µ

z3/2

∂ f
∂µ
+ n

(

1− µ2
) √

z

2
αB

∂ f
∂µ
,

(10)

whereαB is the magnetic convergence parameter defined as

αB =
∂ ln B
∂s

. (11)

The self-induced electric field is calculated from the Ohm’slaw for the return current,

ε (τ, s) =
1

σ (s)

zmax
∫

zmin

dz

1
∫

−1

dµzµ f (τ, s, z, µ) , (12)

where the dimensionless conductivity is

σ (s) = 1.97
√

2π
3
4

n0 (kT (s))3/2

√
meF0

, (13)

andF0 = 1010 erg cm−2 s−1 is the normalisation factor for the energy flux of the beam. The ambient

plasma is assumed to be preheated and its density,n, and temperature,T , as functions of the column

depths are calculated using the hydro-dynamical model (Zharkova &Zharkov 2007). The profiles

n(s) andT (s) for different beam parameters are shown in Fig. 1. These profiles do not change in

time, since the thermal conduction processes have much longer time scales than the precipitation

processes studied here.

2.2. Initial and boundary conditions

There are no high energy electrons before the injection starts, thus, the initial condition is:

f (τ = 0, s, z, µ) = 0. (14)

The boundary condition ats = smin = 2.08× 10−3 (or 2.29× 1017 cm−2) corresponds to the

injected beam distribution

f (τ, s = smin, z, µ > 0) = fnψ (τ)
zδ−1

zδ+γ + 1
exp

(

− (1− µ)2

∆µ2

)

, (15)
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where∆µ is the initial pitch angle dispersion andψ (τ) determines the time variation of the beam.

If the energy is much larger than the lower cut-off energy,z ≫ 1, the distribution is power law

with index−γ − 1, thus, the flux spectrum (∼ z f ) is power law with indexγ. In the opposite case,

z ≪ 1, the distribution is power law with indexδ − 1. The low energy indexδ is chosen to be 10

(see, e.g., Zharkova & Gordovskyy 2005a), while for the highenergy index two values, 3 and 7,

are considered.fn is the normalisation coefficient, which is chosen so that the energy flux of the

injecting electron beam

F (s = smin) = F0

zmax
∫

zmin

dz

1
∫

−1

dµz2µ f (s = smin, z, µ) (16)

is equal to some preset valueFtop, whereF0 = 1010 erg cm−2 s−1 is normalisation factor of the

energy flux. At large depth,s = smax = 9.17× 102 (or 1.01× 1023 cm−2), the number of electrons

in the beam is assumed to be negligibly small, thus the corresponding boundary condition is

f (τ, s = smax, z, µ < 0) = 0 (17)

The distribution function is calculated in the following range of energies:zmin ≤ z ≤ zmax,

wherezmin = 0.1 (or 1.2 keV) andzmax = 100 (or 1.2 MeV). The boundary conditions on energy

are

∂ f (τ, s, z = zmin, µ)
∂z

= 0, (18)

∂ f (τ, s, z = zmax, µ)
∂z

= 0. (19)

The boundary conditions on pitch angle are (McClements 1990)

∂ f (τ, s, z, µ = 1)
∂µ

= 0, (20)

∂ f (τ, s, z, µ = −1)
∂µ

= 0. (21)

2.3. Integral characteristics of the electron distribution in the beam

In the following sections we will numerically solve Eq. (10)and calculate the following quantities

for the electron beam: beam density (in cm−3),

nb (τ, s) = F0

√

me

2E3
0

zmax
∫

zmin

dz

1
∫

−1

dµ
√

zA (s) f (τ, s, z, µ) , (22)

differential particle flux spectrum (in erg−1 cm−2 s−1),

Fn (τ, s, z) =
F0

2E2
0

1
∫

−1

dµzA (s) f (τ, s, z, µ) , (23)

mean particle flux spectrum (in erg−1 cm−2 s−1) (Brown et al. 2003),

〈Fn〉 (τ, z) =
F0

E2
0

smax
∫

smin

ds
1
∫

−1

dµn−1 (s) A (s) z f (τ, s, z, µ)

2
smax
∫

smin

n−1 (s) ds

, (24)
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angle distribution (in arbitrary units),

dNb (τ, µ)
dµ

=

smax
∫

smin

ds

zmax
∫

zmin

dzn−1 (s) A (s)
√

z f (τ, s, z, µ) , (25)

and energy deposition (or heating function) of the beam (in erg cm−3 s−1),

I (τ, s) =
F0n0

E0
n (s) A (s)

zmax
∫

zmin

dz

1
∫

−1

dµ

(

−dz
ds

)

µz f (τ, s, z, µ) , (26)

wheredz/ds is the electron’s energy losses with depth, which can be estimated as (Emslie 1980)

dz
ds
=

(

dz
ds

)

c

+

(

dz
ds

)

r

= − 1
µz
− 2

ε

n
, (27)

where two terms represent the collisional and Ohmic energy losses respectively. CoefficientA (s) =

B0/B (s) takes into account the variation of the magnetic tube cross-section.

3. Summary approximation method

Let us combine the relative derivatives and rewrite the Fokker-Planck equation (10) in the following

form

∂ f
∂τ
= −n

√
zµ
∂ f
∂s
+

(

2εµ
√

z + n
1
√

z

)

∂ f
∂z
+

















ε
1− µ2

√
z
− n

µ

z3/2
+ n

(

1− µ2
) √

z

2
αB

















∂ f
∂µ
+ n

1− µ2

2z3/2

∂2 f
∂µ2
=

φs
∂ f
∂s
+ φz

∂ f
∂z
+ φµ

∂ f
∂µ
+ φ2µ

∂2 f
∂µ2

,

(28)

Eq. (28) is solved numerically by using the summary approximation method (Samarskii 2001).

This method allows us to study time dependent Fokker-Planckequation and it is different from

the one used by Zharkova & Gordovskyy (2005b) to solve the stationary problem. According to

the summary approximation method the four-dimensional problem is reduced to a chain of two-

dimensional problems. This is done by considering the three-dimensional differential operator at

the right hand side of Eq. 10 as a sum of one-dimensional operators, each acting on the distribution

function separately during one third of the time step. On each time substep the distribution function

is calculated implicitly, hence, the numerical scheme is

f τ+
1
3∆τ − f τ = ∆τφsLs f τ+

1
3∆τ (29)

f τ+
2
3∆τ − f τ+

1
3∆τ = ∆τφzLz f τ+

2
3∆τ (30)

f τ+∆τ − f τ+
2
3∆τ = ∆τ

(

φµLµ + φ2µL2µ

)

f τ+∆τ (31)

where Lα are the finite difference operators that approximate the first order differential op-

erators∂/∂α. If the coefficient φα is positive then the right difference scheme is used, i.e.

Lα f =
(

f α+∆α − f α
)

/∆α, otherwise the left scheme is used, i.e.Lα f =
(

f α − f α−∆α
)

/∆α. The

L2µ f =
(

f µ+∆µ − 2 f µ + f µ−∆µ
)

/∆α2 is the central difference that approximates the second order

derivative∂2 f /∂µ2. The computational grid has 200 nodes in thes dimension, 50 nodes in thez

dimension and 30 nodes in theµ dimension. The nodes are distributed logarithmically in the s and

z dimensions and linearly in theµ dimension.



Taras V. Siversky and Valentina V. Zharkova: Title Suppressed Due to Excessive Length 7

10
18

10
20

10
22

0

2

4

6

8

10
x 10

7

column depth, cm−2

de
ns

ity
, c

m
−

3

 

 

t = 1.70e−02 s
t = 3.40e−02 s
t = 6.80e−02 s
t = 1.02e−01 s

(a)

10
18

10
20

10
22

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−6

column depth, cm−2

el
ec

tr
ic

 fi
el

d,
 s

ta
tv

ol
t c

m
−

1

 

 

t = 1.70e−02 s
t = 3.40e−02 s
t = 6.80e−02 s
t = 1.02e−01 s

(b)

Fig. 2: Electron density (a) and self-induced electric field(b) profiles, wheret is time passed after

the injection is ”turned on”. Collisions and electric field are taken into account. The beam

parameters, see Eq. (15), areγ = 3, Ftop = 1010 erg cm−2 s−1 and∆µ = 0.2.

Eq. (29) together with boundary conditions forms a set of linear equations, which, after been

solved, givesf τ+
1
3∆τ from known f τ. Distribution functionf τ+

1
3∆τ is then used in Eq. (30) to obtain

f τ+
2
3∆τ. Finally, from Eq. (31) we obtainf τ+∆τ which is, in turn, used in Eq. (29) on the next step.

Electric fieldε is calculated on each time step according to Eq. (12) where the distribution

function is taken from the previous step. Thus, the numerical scheme is not fully implicit. This

means that, in order to avoid numerical instability, the time step,∆τ, must be shorter than some

critical value∆τc. In practice, the time step was determined by the trial-and-error method. For

example, for the energy flux 1010 erg cm−2 s−1 the time step is 1.7×10−4 s. It was found that when

the energy flux is increased, the time step need to be decreased proportionally to keep the numerical

scheme stable.

4. Stationary injection

In this section we present simulation results for the case ofa stationary injection. While Zharkova

et al. (2009) studied hard X-ray emission produced by a steady beam, in the current paper, we focus

more on the energy deposition of an electron beam and on the comparison of electron precipitation

results obtained for different models of magnetic convergence. The electron injection starts att = 0

and the simulation continues until the stationary state is reached. If it is not indicated explicitly,

the initial spectral index of the beam is chosen to beγ = 3, the energy flux at the top boundary is

Ftop = 1010 erg cm−2 s−1 and the initial angle dispersion is∆µ = 0.2.

4.1. Effects of collisions and electric field (αB = 0)

Let us first show how the system relaxes to the stationary state. Fig. 2 shows the profiles of the

electric field and beam density at different times. It is seen that the electric field relaxes somewhat

faster than the density. The relaxation timetr, after which the system becomes stationary, can be

estimated as∼ 0.07 s.

The local maximum, which appears on the density profile at thedepth of about∼ 2×1019 cm−2

(Fig. 2a), is caused by the beam deceleration while the flux ofelectrons remains nearly constant.

After this depth most of electrons leave the distribution (thermalise) by reducing their energy below
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Fig. 3: Beam electron density in different energy bands, if only collisions are taken into account.

Beam parameters are the same as in Fig. 2.
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Fig. 4: Differential flux spectra of the beam electrons integrated over the positive and negative

pitch angles. Beam parameters are the same as in Fig. 2.

the energyzmin, and the density rapidly decreases at the depth of about∼ 5× 1019 cm−2 (Fig. 2a).

This corresponds to the stopping depth for the electrons with energies close to the lower cut-off

energy (12 keV). The electrons with higher energies can travel deeper (see Fig. 3). In particular,

it can be seen that electrons with energies> 500 keV can travel down to the photosphere almost

without any energy losses. Fig. 3 is in good agreement with the results obtained by Zharkova &

Gordovskyy (2006) (see Tab. 1).

In Fig. 4 we plot the differential flux spectra at different depths for the forward (µ > 0) and

backward (µ < 0) moving electrons. It can be seen that the self-induced electric field does not
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Fig. 5: Pitch angle distribution (a) and heating function ofthe beam (b). Beam parameters are the

same as in Fig. 2.

change the spectra of the downward (µ > 0) moving electrons but essentially affects the spectra of

the upward (µ < 0) moving ones. Since the angle diffusion due to the electric field is more effective

for the lower energy electrons, the spectra of the returned electrons is enhanced at low and mid

energy (Fig. 4d).

The number of electrons returning back to the source plottedin Fig. 5a is smaller compared to

the case when the self-induced electric field is not taken into account. However, even without the

electric fieldε, a number of electrons withµ < 0 is essential owing to the pitch angle scattering

(second and third terms on the right hand side of in Eq. (10)).

The heating function plot (Fig. 5b) shows that if a self-induced electric field is taken into ac-

count the heating is most effective at the upper column depth (2× 1019 cm−2) compared to much

lower one (1020 cm−2) in the pure collisional beam relaxation, which is consistent with the results

obtained by Emslie (1980). Indeed, the inclusion of the electric field decreases the stopping depth

(Zharkova & Gordovskyy 2006) and increases the number of returning electrons, thus, reducing the

number of electrons at larger depths. All these factors leadto the upward shift of the heating func-

tion maximum. The theoretical heating curve for pure collisions (Syrovatskii & Shmeleva 1972) is

plotted in Fig. 5b.

4.2. Effects of a magnetic convergence

The converging magnetic field acts as a magnetic mirror and can essentially increase the number of

the electrons that move upwards. Let us determine how large the magnetic convergence parameter,

αB, should be to have any noticeable effect on the distribution of beam electrons. In order to do

so we compare the terms in front of∂ f /∂µ in Eq. (28). Since the collisional pitch angle diffusion

is much smaller the one caused by the electric field (see Fig. 5a), we compare the effects of the

magnetic convergence with those caused by the electric field. The magnetic convergence effects

are stronger ifαB > 2ε/(nz). To estimate this expression we plot the dimensionless ratio ε/n in

Fig. 6. The minimal value of the ratioε/n in the interval froms = smin to the stopping depth of

low energy (z = 1) electrons,∼ 5 × 1019 cm−2, is about 0.2. Thus, the the magnetic convergence

would be more effective than the electric field for the electrons with energies higher than the cut-

off energy ifαB & 0.4. The high energy electrons can travel much deeper into chromosphere (see
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Fig. 7: Mean flux spectra (a) of the upward (µ < 0) propagating electrons and energy deposition

(b) without (crosses) and with magnetic convergence given by Eq. (33) (solid curve), Eq. (34)

(dashed curve), Eq. (37) (dotted curve) and Eq. (38) (dot-dashed curve). Beam parameters are the

same as in Fig. 2.

Fig. 3), where the ratioε/n can be as low as 2× 10−4, thus the magnetic convergence would be

more effective for them ifαB & 4× 10−6.

In the following subsections we present the results of simulations for different models of the

converging magnetic field. These results are illustrated bythe mean flux spectra plots (Fig. 7a) for

the upward (µ < 0) moving electrons, while spectra of the downward moving electrons are found

to be very close for all convergence models. The energy deposition profiles for different magnetic

field approximations are shown in Fig. 7b.

4.2.1. Exponential approximation of a magnetic field convergence

Following the approximation proposed by Leach & Petrosian (1981), let us assume that the con-

vergence parameter does not depend on depth

αB = αB0 = const, (32)

then the magnetic field variation is

B(s) = B0 exp(αB0 (s − smin)) . (33)
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Suppose that the magnetic field at the depthsmax is 1000 times stronger than at the depth

smin, thenαB ≈ ln(1000)/smax = 7.5 × 10−3. As we discussed earlier the effect of the magnetic

convergence with such lowαB would be noticeable only for high energy (> 100 keV) electrons.

This is clearly illustrated by a comparison of the mean flux spectra of the moving upward electrons

and heating function obtained with and without magnetic convergence (see solid and dashed curves

in Fig. 7). While the electric field returns mostly the low andmid energy electrons and makes

the spectrum of the returning electrons softer (in comparison with the purely collisional case), the

magnetic mirror returns back the high energy electrons and makes their spectrum harder and similar

to the initial power law. On the other hand, magnetic convergence reduces the heating at the larger

depths (Fig. 7b), where it is caused by high energy electrons, because they were mirrored back to

the corona.

4.2.2. Parabolic approximation

McClements (1992) suggested the following profile of a magnetic field variation:

B(s) = B0













1+
(s − smin)2

s2
0













. (34)

If B(smax)/B(smin) = 1000 thens0 ≈ smax/
√

(1000)= 31.6. The convergence parameter is

αB(s) =
2(s − smin)

s2
0 + (s − smin)2

. (35)

The magnetic convergence parameterαB at maximum is 1/s0 ≈ 3.16× 10−2. This value is not

high enough to affect all the beam electrons, but as it is seen in Fig. 7 such the convergence model,

similar to the previous one, increases the number of high energy electrons with negativeµ and

reduces the heating of deep atmosphere layers. Note, also, that McClements (1992) considered

a constant plasma density, and in their model the profile of the magnetic field given by Eq. (34)

can be more effective, while in our case plasma density exponentially increases with depth. Here

we supposed that the magnetic field changes according to Eq. (34) in the whole range of column

depths, however it would be more appropriate to assume that the magnetic field variation is different

in the corona and chromosphere. Such approach is discussed in the following section.

4.2.3. Hybrid approximation of magnetic field

In this model we propose thatαB is close to constant at small depth (in the corona) and tends to

zero after some depths0 (in the chromosphere):

αB(s) = αB0
s2
0

s2
0 + (s − smin)2

, (36)

then the magnetic field variation is

B(s) = B0 exp





















s
∫

smin

α
(

s′
)

ds′





















= B0 exp

(

αB0s0 arctan

(

s − smin

s0

))

. (37)

At small depth, wheres ≪ s0, the magnetic field varies asB ≈ B0 exp(αB0(s − smin)), and at large

depth,s ≫ s0, magnetic field is constant,B ≈ B0 exp(αB0s0π/2). In the most of simulations (where

it is not stated explicitly) we acceptαB0 = 10 ands0 = 0.2 (or 2.2× 1019 cm−2, which corresponds

to the transitional region), this makes the ratioB(smax)/B(smin) to be equal 23.1.
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Fig. 8: Beam electron density in different energy bands. The magnetic convergence parameter is

given by Eq. (36). Beam parameters are the same as in Fig. 2.

−1 −0.5 0 0.5 1

10
−3

10
−2

10
−1

pitch angle cosine

di
st

rib
ut

io
n 

fu
nc

tio
n

 

 

collisions, E field
collisions, convergence

Fig. 9: Pitch angle distribution. The magnetic convergenceparameter is given by Eq. (36). Beam
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Fig. 10: Beam density (a) and energy deposition (b) as a function of column depth. The magnetic

convergence parameter is given by Eq. (36) with variousαB0 ands0. Beam parameters are the

same as in Fig. 2.

Electrons with velocities inside the loss-cone are not reflected by the magnetic mirror and reach

the deep layers. For the current convergence model the critical pitch angle cosine of the loss-cone

is µlc =
√

1− B(smin)/B(smax) ≈ 0.98. This means that for the accepted initial angle dispersion of

0.2 about 90% of the electrons are reflected back.
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As it is seen in Fig. 9 the effect of magnetic convergence on the pitch angle distributionis

similar to the effect of the electric field. However, since the electric field ismost effective for the

electrons withµ = ±1, the pitch angle distribution has a maximum atµ = 1 when the convergence

is not taken into account. On the contrary, magnetic field does not affect electrons moving along the

field lines, thus, the angle distribution of the upward moving electrons has a maximum atµm ≈ −0.8

(Fig. 9), which is consistent with the conclusions of Zharkova & Gordovskyy (2006).

As the convergence parameterαB is relatively high in this model, the whole spectrum of elec-

tron energy is affected (see Fig. 7a). The energy deposition profile for this magnetic field approxi-

mation (Fig. 7b) indicates that the heating is only about 30%of the heating produced in the case of

constant magnetic field, which is because many of electrons are reflected by the magnetic mirror

before they get into dense plasma.

The profiles of electron density with different energies are plotted in Fig. 8. If only magnetic

convergence is taken into account (Fig. 8a), it can be seen that magnetic mirroring does not depend

on the electron energy. Electrons with pitch angle outside the loss-cone are turned back at depth

∼ 1019−1020 cm−2. The remaining electrons (with pitch angle inside the loss-cone) can travel down

to the lower boundary in the atmosphere. When the collisionsare taken into account, electrons,

especially those with low energies, loose their energy due to collisions (Fig. 8b). It is important to

compare collisional beam relaxation with and without magnetic convergence plotted in Figs. 8b and

3 respectively. It can be noticed that the combination of theeffects of collisions and convergence is

stronger than the sum of two separate effects. This occurs because electrons with the initial pitch

angles inside the loss-cone are scattered by collisions to pitch angles which fall out from loss-cone,

thus, more electrons are returned back by the magnetic mirror.

In Fig. 10 the results of simulations are presented for different magnitudes for the parameters

αB0 and s0 of the magnetic convergence model given by Eq. (36). The increase ofαB0 clearly

affects the beam electrons by reducing the depth of their penetration and by increasing the number

of returning electrons. It is obvious that the system would be sensitive to the variation ofs0 if it is

smaller than the penetration (stopping) depth, that is proven in Fig. 10a.

4.2.4. Magnetic field model fitted to the observations

Although the magnetic field can not be directly measured in the solar atmosphere, there some indi-

rect techniques which allow to estimate the magnitude of themagnetic field. The coronal magnetic

field can be determined from radio observations of gyro-resonance emission (Lang et al. 1993;

Brosius & White 2006). In particular, Brosius & White (2006)suggest that the magnetic scale hight

above sunspots,LBcor = B/∆B, is∼ 7 Mm. On the other hand, Kontar et al. (2008) determined the

chromospheric magnetic field by measuring the sizes and heights of hard X-ray sources in differ-

ent energy bands. They found that the chromospheric magnetic scale hight,LBchr, is ∼ 0.3 Mm.

Assuming that the magnetic scale hight,LB, changes linearly with depthl, the convergence param-

eter is

αB(s) =
αB0

nLB
, (38)

whereαB0 = E2
0/(πe4n0 lnΛLBcor) = 15.7, and the dimensionless magnetic scale hight as a function

of the column depth is

LB = 1−
(

1− LBchr

LBcor

)

l(s)
l(smax)

, (39)
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Fig. 11: Electron density as a function of column depth (a) and pitch angle (b). Collisions and the

electric field are taken into account. The beam parameters, see Eq. (15), areγ = 3,

Ftop = 1010 erg cm−2 s−1, ∆µ = 0.2 and injection time,δt = 1.7× 10−3 s.

where the linear depth isl(s) ∝
∫

n(s)−1ds. Since the magnetic field is defined as function of the

linear depth the model depends on the density profilen(s) of the background plasma.

As it is seen in Fig. 7a, such the magnetic convergence affects the electrons with all energies.

This leads to about 20% reduction of the heating produced by beam electrons in comparison with

constant magnetic field profile (Fig. 7b).

5. Impulsive injection

As it was shown by Siversky & Zharkova (2009), the electron acceleration time in a reconnecting

current sheet can be as short as 10−5 s. Also, SMM (Kiplinger et al. 1983) and CORONAS/IRIS

(Charikov et al. 2004) observations reveal millisecond impulses in the hard X-ray emission from

solar flares. These facts suggest that the time scale of a beamof accelerated electrons may be rather

short. In this section we study the evolution of such short impulse in the solar atmosphere. The

injection time,δt, is chosen to be 1.7 × 10−3 s, which is much shorter than the relaxation time

tr ≈ 0.07 s, that was found in Sec. 4.1 (see Fig. 2). The default parameters of the beam are similar

to the case of the stationary injection: the initial spectral index of the beam isγ = 3, the maximal

energy flux at the top boundary isFtop = 1010 erg cm−2 s−1 and the initial angle dispersion is

∆µ = 0.2. In the simulations where the magnetic convergence is taken into account we use the

magnetic field approximation given by Eq. 37 withαB0 = 10 ands0 = 0.2.

The impulse injection, obviously, leads to a smaller density of electrons at a given depth in

comparison with the stationary injection (see Figs. 2a and 11a). A smaller density results in a lower

self-induced electric field. Thus, in the case of a short impulsive injection the electric field does not

affect so much the distributions. As a result, the only mechanism that can essentially increase the

number of returning electrons is a magnetic convergence.

Anisotropic scattering of beam electrons in collisions with the ambient plasma makes the pitch

angle distribution more flat with time (see Fig. 11b). The electrons propagating downward reach

the depth with a high density of the ambient plasma, loose their energy due to collisions and leave

the distribution (become thermalised) when their energy isless thanzmin. On the contrary, the

returning electrons move into less dense plasma almost without loosing any energy, but gaining it
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(c) collisions and convergence Eq. (36)
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(d) collisions and convergence Eq. (38)

Fig. 12: Mean flux spectra of the electrons. The beam parameters are the same as in Fig. 11.

in the self-induced electric field. Thus, after some time thenumber of the upward moving electrons

can exceed the number of downward moving ones, which is clearly seen in Fig. 11b. The angle

distributions show that after∼ 3.4× 10−2 s most of the downward propagating electrons are gone

and the majority of electrons haveµ < 0, i.e. they move back to the source in the corona.

5.1. Energy spectra

Since the first term at the right hand side of Eq. (10), which isresponsible for the energy losses

due to collisions, is proportional toz−1/2 (wherez is the dimensionless energy), one might expect

that electron spectra should become harder with time. However, the downward moving electrons

with higher energy reach the dense plasma faster and loose their energy faster than lower energy

electrons, which makes the energy spectra softer with time (Fig. 12a). The same is valid for the

spectra of the upward moving electrons. In this case, the high energy electrons escape the distri-

bution faster by reaching the top boundary (s = smin). Due to this effect the power law index can

increase from the initial value 3 up to 4 during the beam evolution (Fig. 12a).

Magnetic field on its own cannot change the energy of electrons. However, a converging mag-

netic field acts as a magnetic mirror and returns the essential part of electrons back to the source.

As it was shown above in Fig. 7a the magnetic convergence is more effective for the high energy

electrons than the electric field and pitch angle diffusion. Thus, high energy electrons can quickly

escape through thes = smin boundary and the power law index can reach higher values thanin the

case with the constant magnetic field. For example, for the magnetic field profile given by Eq. (37)
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(b) collisions and electric field
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(c) collisions and convergence
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(d) collisions, convergence and electric field

Fig. 13: Energy deposition of the beam. The beam parameters are the same as in Fig. 11.

the power law index increases from the initial value 3 up to 8 (Fig. 12c). If the convergence pa-

rameter is defined by Eq. (38), the initial power law distribution converts to some kind of thermal

distribution with an essential drop in high energies (Fig. 12d).

5.2. Energy deposition

Fig. 13 shows the evolution of energy deposition, or heatingfunctions, when different precipitation

effects are taken into account. In purely collisional case (Fig. 13a) the heating maximum appears at

the bottom boundary, moves upwards with time and vanishes near column depth∼ 1019−1020 cm−2.

This evolution is consistent with stopping depths obtainedfor electrons with different energies

(Fig. 3). Indeed, the high energy electrons are the first to reach depth where the density is high

enough to thermalise them. Less energetic electrons loose their energy at smaller depth and later

in time. Thus, the heating function maximum moves towards the stopping depth of the low energy

electrons, after which it sharply decreases.

In a presence of the self-induced electric field (Fig. 13b) the heating by collisions becomes

smaller than in the purely collisional case because some electrons are reflected by the electric

field and do not reach dense plasma. On the other hand, the second maximum on heating function

appears, which is caused by the losses due to the electric field. This maximum does not move but

grows in time with more electrons coming to the region with high electric field (see Fig. 2b).

As it was shown in Sec. 4.2.3 for the magnetic convergence given by Eq. (37) only about

10% of the electrons can escape through the loss-cone and heat the deep layers. Thus magnetic



Taras V. Siversky and Valentina V. Zharkova: Title Suppressed Due to Excessive Length 17

10
18

10
20

10
22

0

20

40

60

80

100

column depth, cm−2

en
er

gy
 d

ep
os

iti
on

, e
rg

 c
m

−
3  s

−
1

 

 

t = 1.02e−02 s
t = 1.70e−02 s
t = 2.21e−02 s
t = 3.40e−02 s

(a) collisions

10
18

10
20

10
22

0

20

40

60

80

100

column depth, cm−2

en
er

gy
 d

ep
os

iti
on

, e
rg

 c
m

−
3  s

−
1

 

 

t = 1.02e−02 s
t = 1.70e−02 s
t = 2.21e−02 s
t = 3.40e−02 s

(b) collisions and electric field

Fig. 14: Energy deposition of the beam withγ = 7 initial power law index. Other beam parameters

are the same as in Fig. 11.

convergence substantially reduces the energy deposition at lower atmospheric levels and shifts the

heating maximum upwards to the corona (Figs. 13c and 13d).

Heating function of the beam with the initial power law indexγ = 7 is shown in Fig. 14. In

contrast to theγ = 3 beam, the heating peak appears at smaller depth and moves downwards.

Apparently, this is because the number of high energy electrons is extremely low for softer beam

(γ = 7), and the heating that they produce at larger depths is too low to be noticeable. Also,

the heating profile is narrower but higher and its maximum located higher in the atmosphere in

comparison withγ = 3 case. When the electric field is taken into account (Fig. 14b) the heating is

stronger for smaller depths in comparison to the pure collisional case (Fig. 14a).

A more powerful beam, with energy flux 1012 erg cm−2 s−1, obviously produces more heat in

the atmosphere (Fig. 15) than a beam with energy flux 1010 erg cm−2 s−1. Note, that in this case

a different hydro-dynamical model is used to estimate the densityand temperature of the ambient

plasma. The discontinuity at the depth of 1020 cm−2 is caused by a sharp increase of the ambient

plasma density (see Fig. 1), which apparently corresponds to the transition region. Two maxima

are clearly seen on the heating profile – one in the chromosphere, another one in the corona. If

the magnetic convergence is absent the chromospheric heating is much stronger (Fig. 15a). On the

other hand, if the convergence is taken into account only about 10% of electrons can reach the

chromosphere, thus, the heating under the transition region is reduced by an order of magnitude,

while the coronal heating remains nearly the same as in the case of the constant magnetic field

(Fig. 15c).

Note also, that the time of beam relaxation is longer for a denser beam, which is the result of a

smaller density of the ambient plasma and, hence, larger linear depth for the same column depth.

For example, the depth 1020 cm−2 corresponds to 2× 108 cm and 11× 108 cm for the beam energy

fluxes 1010 erg cm−2 s−1 and 1012 erg cm−2 s−1 respectively. This leads to the longer relaxation

time for the atmosphere preheated by the stronger beam, for energy flux of 1012 erg cm−2 s−1 the

relaxation time is found to be∼ 0.2 s.
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(b) collisions and electric field
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(c) collisions and convergence

Fig. 15: Energy deposition of the beam with the energy flux 1012 erg cm−2 s−1. Other beam

parameters are the same as in Fig. 11.
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Fig. 16: Intensity of the hard X-ray emission (in arbitrary units): integrated over depth as a

function of time (a) and temporal evolution of the spatial profile (b). Beam parameters are the

same as in Fig. 11.

5.3. Bursts of hard X-ray emission

In order to make a comparison with observations we calculatethe intensity of hard X-ray emis-

sion produced by the injection of a short electron beam. The bremsstrahlung cross-sections are

taken in the relativistic form (see Gluckstern & Hull 1953).Fig. 16a shows the time profile of hard

X-ray intensity produced by the impulse with lengthδte = 1.7 ms. The timescale of the hard X-

ray impulse,δthxr, is about 20 ms, which is determined by the relaxation time ofthe atmosphere
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tr ≈ 70 ms established earlier in Sect. 4.1. This timescale is in agood agreement with the observa-

tions (Charikov et al. 2004). Further simulations show thatas long asδte ≪ δthxr, the hard X-ray

timescale depends only on the atmosphere parameters and does not depend on the length of the

initial electron impulse.

Evolution of the spatial profile of the hard X-ray intensity (Fig. 16b) resembles that of the

energy deposition (see Fig. 13b). The emission starts at thebottom when high energy electrons

reach this depth and gradually moves upwards. After reaching the depth∼ 2 × 1019 cm−2 the

intensity the emission decreases and finally the emission vanishes.

6. Conclusions

By solving numerically the time-dependent Fokker-Planck equation one is able to study the tem-

poral evolution of the electron beam precipitation in the solar atmosphere and evaluation of the

relaxation time required for the beam to reach the stationary regime. For the beam with energy flux

1010 erg cm−2 s−1 this relaxation time is∼ 0.07 s and it becomes longer by a factor of about 3 for

the beam with energy flux 1012 erg cm−2 s−1.

The effect of the self-induced electric field during the stationarybeam injection is similar to

that found in previous studies by Emslie (1980); Zharkova & Gordovskyy (2006). In particular, if

the electric field is taken into account, then the maximum of the energy deposition profile is shifted

upwards making the coronal heating stronger and the chromospheric heating weaker than in the

case of pure collisional precipitation.

We considered different models of a converging magnetic field to study the effectiveness of

the beam’s electron refraction by a magnetic mirror. Magnetic field approximations used earlier

by Leach & Petrosian (1981); McClements (1992) have the samespatial dependence in the corona

and chromosphere. Even if the magnetic field in the photosphere is accepted to be 3 orders of

magnitude higher than in the corona, such the magnetic profiles are shown to affect only high

energy electrons of the beam. We propose the model where magnetic field exponentially increases

with depth in the corona and becomes constant in the lower chromosphere. Such the magnetic field

variation can affect the whole energy spectrum of electrons, while the ratio of photospheric/coronal

magnetic field is as low as 23. Since the converging magnetic field returns many electrons back to

the source, the heating due to the collisions and electric field is reduced by 70% in comparison with

the constant magnetic field case. We also considered the model based on the indirect measurements

of the magnetic field in the solar atmosphere. Such the magnetic field variation can also affect

electrons of all energies and reduce the collisional heating by 20% in comparison with the constant

magnetic field profile.

The further study is dedicated to the impulsive injections of electrons. In the simulation of

impulsive injection the length of the impulse is chosen to be1.7× 10−3 s, which is much shorter

than the relaxation time. It was found that the effect of the electric field is considerably smaller

for the short impulse than for the steady injection. In our studies we assumed that the beam’s

current is always compensated by the return current, thus the self-induced electric field develops

immediately. However, as it was shown by van den Oord (1990),the beam’s current neutralisation

time is of the order of the collisional time. Thus, the effect of electric field can be even smaller for

the short impulses.



20 Taras V. Siversky and Valentina V. Zharkova: Title Suppressed Due to Excessive Length

Initial energy spectrum of the injected impulse was power law. It was shown that during the

evolution of the impulse the power law index increases in time. For example, if the joint effects of

the collisions and magnetic convergence are taken into account, the initial power law index of 3

can increase up to 8.

The energy deposition profile is shown to depend on the initial power law index. If the energy

spectrum is hard (γ = 3) the heating starts at the bottom end of the system due to thehigh energy

electrons. In the case of soft (γ = 7) impulse the number of high energy particles is too low to

produce any noticeable heating of the deep layers. On the other hand the higher layers are heated

more effectively due to the higher number of the low energy electronsin the softer beam.

We also compared the evolution of beams with different intensities. It was found that the dif-

ference in this case is mostly cased by the different density and temperature profiles taken from the

hydro-dynamical model (Zharkova & Zharkov 2007) (see Fig. 1). For example, the timescale of

the impulse evolution is longer for more intense beam.

If the timescale of the electron impulse is short enough, then the timescale of the hard X-ray

emission is determined by the reaction of the atmosphere. Thus, it is of the same order of magnitude

as the relaxation time, which, in turn, is of the order of 10 msand longer. This means that shorter

electron impulses can not be detected by the hard X-ray observations.
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