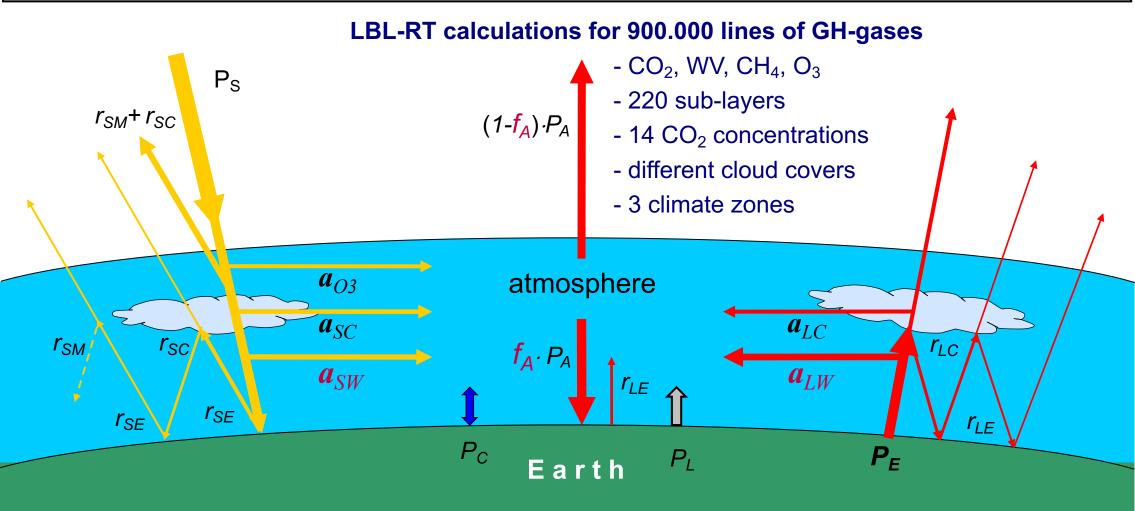


How Much CO₂ and the Sun Contribute to Global Warming?

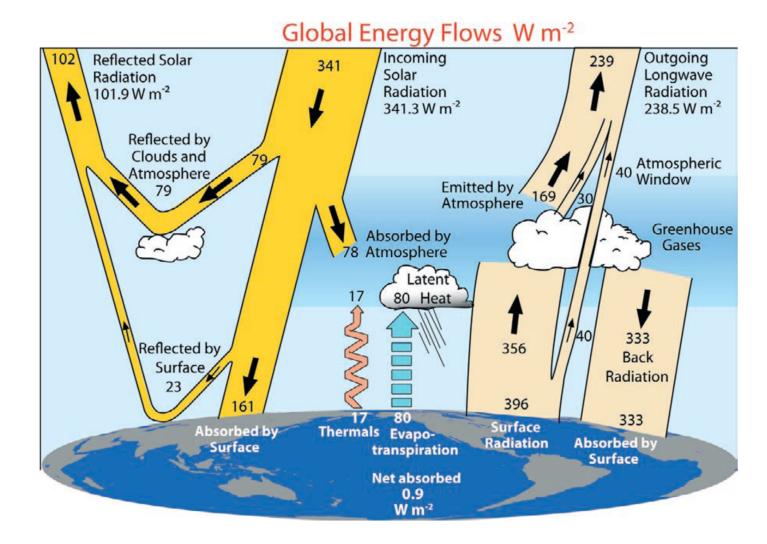

Hermann Harde

Helmut-Schmidt-University Hamburg, Germany


IPCC declares:

- Observed warming is predominantly caused by CO₂
- Increasing CO₂ is only man-made

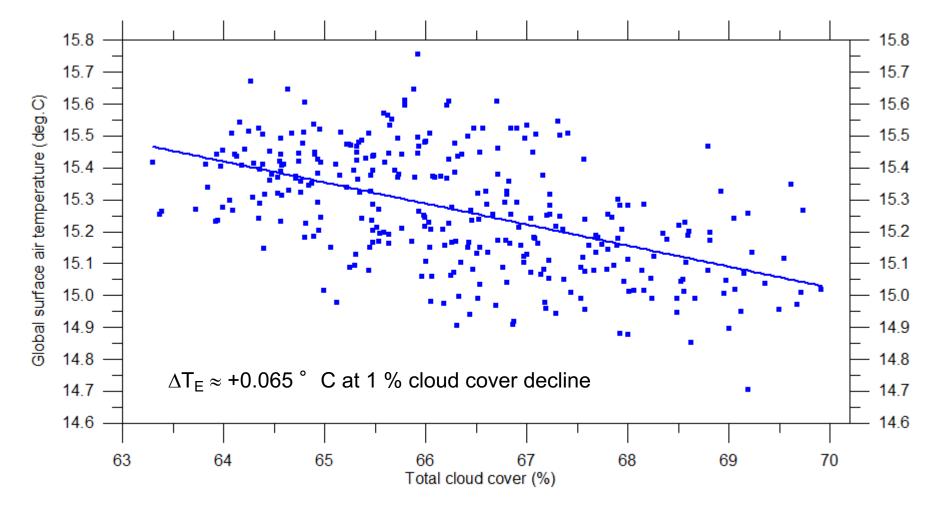
Symbols: *P* – power; r – reflectivity (scattering).; *a* – absorptivity; f_A – asymmetry factor



Experimental Physics

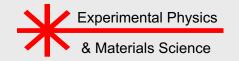
& Materials Science

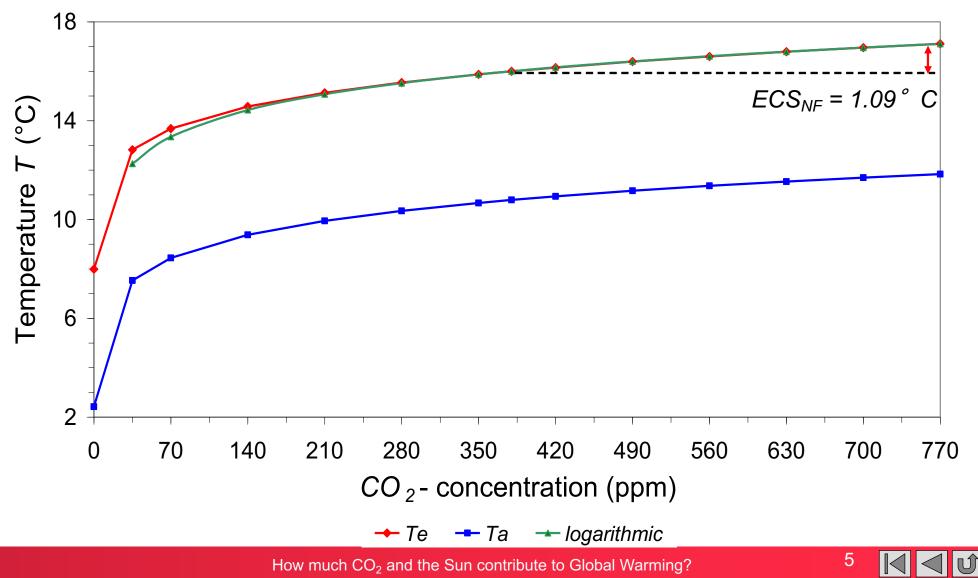
3


Energy and radiation budget after Tremberth, Fassulo and Kiehl

International Satellite Cloud Climatology Project - ISCCP

Experimental Physics


& Materials Science


http://www.climate4you.com/index.htm


4

Earth's temperature T_E and lower atmospheric temperature T_A at 66 % cloud cover

Feedback Processes:

– many scientists agree: increasing CO_2 absorption causing a forcing ΔF_{CO2} should only moderately contribute to an additional warming ΔT_0

$$\Delta F_{CO2} \longrightarrow X_{S} \longrightarrow \Delta T_{0} \qquad \Delta T_{0} = \lambda_{S} \cdot \Delta F_{CO_{2}}$$

with λ_{S} – Planck sensitivity

– greater worry: smaller perturbations might initiate a feedback $f [W/m^2/° C]$, could significantly amplify the primary perturbation

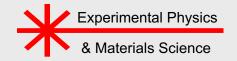
$$F_{R} \xrightarrow{2} f \cdot T \xrightarrow{2} feedback f \xrightarrow{2} feedback f \xrightarrow{2} f \cdot T \xrightarrow{2} feedback f \xrightarrow{2} feedback f$$

• Well known feedbacks:

- water vapor feedback
- lapse rate feedback
- albedo feedback
- cloud feedbacks

Additional feedbacks:

- convection feedback
- evaporation feedback
- solar induced cloud feedback



• Water Vapor Feedback:

- From LBL-RT calculations for 3 climate zones \rightarrow diff. T \rightarrow diff. humidity: *clear sky:* $f_{WV} = 1.10 W/m^2/^{\circ} C \rightarrow A = 1.57$ or + 57%66% clouds: $f_{WV} = 0.43 W/m^2/^{\circ} C \rightarrow A = 1.14$ or + 14%
- IPCC (AR5): $f_{WV} = 1.6 \ W/m^2/^{\circ} C \rightarrow A = 2.0 \ or +100\%$

Reasons for the discrepancy:

- My calculations also consider sw absorptivity \rightarrow negative feedback
- IPCC neglects changing absorption cross-section with surface temperature
- Main differences: Calculation of a_{LW} with temperature & humidity:
 - IPCC uses only clear sky for WV calculations and
 - > emanates from a WV concentration for mid- latitudes half of the global mean

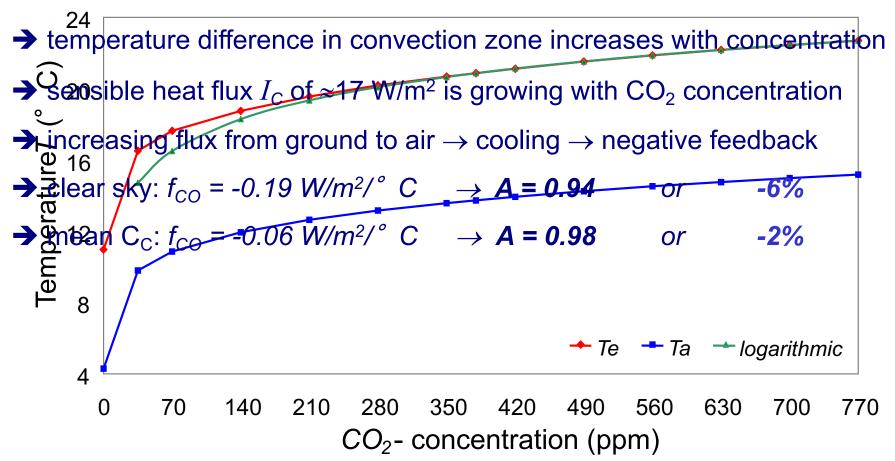
Lapse Rate Feedback:

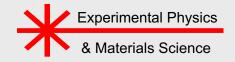
- in agreement with AR5:

$$f_{LR} = -0.6 W/m^2/^{\circ} C \rightarrow A = 0.85 \text{ or } -15\%$$

Surface Albedo Feedback:

- from AR5: $f_{SA} = 0.3 W/m^2/^{\circ} C \rightarrow A = 1.11$ or +11%

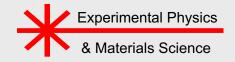




Convection Feedback:

– atmospheric temperature T_A responds less sensitively to CO₂ changes

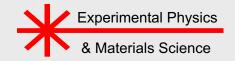
Evaporation Feedback:


- evaporation of water and sublimation of ice contribute to cooling of surface
- an increasing Earth-temperature forces these processes and results in negative feedback → evaporation feedback
- latent heat:

$$I_L = l_H \cdot (T_E - T_0)$$

 $l_H = 5 \text{ W/m}^2/^\circ \text{ C}$ – heat transfer coefficient; T_0 – freezing point

- clear sky: $f_{EV} = -2.1 \quad W/m^2/^{\circ} C \rightarrow A = 0.59$ or -41%
- mean C_C : $f_{EV} = -2.76 W/m^2/^{\circ} C \rightarrow A = 0.56$ or -44%



Cloud feedback

- Reduced cloudiness \rightarrow increased temperature:
 - What controls cloud cover?
- Some observations: increasing T and humidity \rightarrow increasing cloud cover C_C negative **Thermally Induced Cloud Feedback (TICF)**,
- Other observations: just opposite
- IPCC assumes: positive TICF initiated by CO_2 specifies in AR5: feedback $f_{CT} = 0.3 W/m^2/^{\circ} C (-0.2 - 2.0 W/m^2/^{\circ} C)$

Feedback Effects

13

Ú

 \langle

 $\left| \right\rangle$

	CMIP5 f	[W/m ² /°	C] A	2LCM	<i>f</i> [W/m²°	C]	
ECS _{NF} 1.16 -	- 1.06 °C			1.09 °C			
+ water vapor	1.06 °C	1.6	2.00	0.15 °C	0.43	1.1	14
+ albedo	0.11 °C	0.3	1.10	0.11 °C	0.3	1.1	10
- lapse rate	0.16 °C	- 0.6	0.85	0.16 °C	- 0.6	0.8	35
- convection	-		-	0.02 °C	- 0.06	0.9	98
- evaporation	-		-	0.48 °C	- 2.76	0.5	56
+ therm. clouds	1.51 °C	2.0	2.43	1.44 °C	2.0	2.3	33
ECS	15.5 °C	3.0	14.6	1.22 °C	0.37	1.1	12

Strong indication for other mechanisms contributing

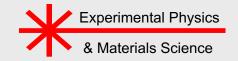
- to cloud changes
- to additional warming


Solar Cloud Changes:

The amount of clouds varies over the solar cycle: is an indication that solar activities also modulate the cloud cover

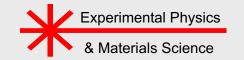
- Cosmic Rays Henrik Svensmark, Shaviv et al.: increasing TSI reduces the cosmic flux via solar magnetic field → reduces formation of water droplets in the lower atmosphere
- Hyper-sensitivity to UV-Rays Joanna Haigh:

increased UV-radiation activates ozone production and heat transfer \rightarrow acts back on cloud formation

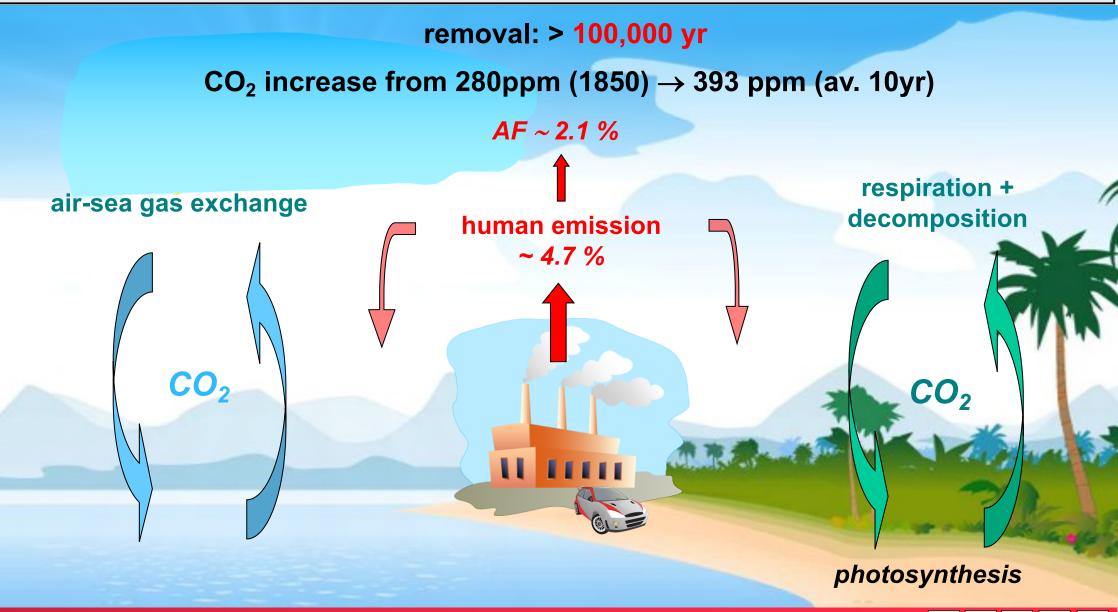


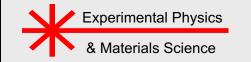
Solar Cloud Changes

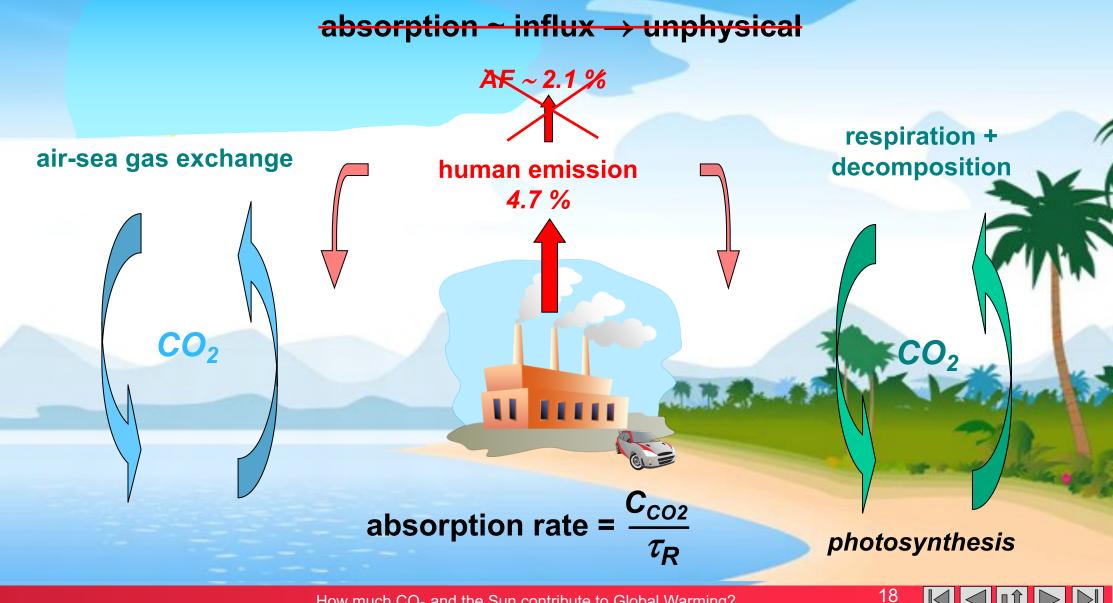
- Over last century: Modern Grand Solar Maximum with $\triangle TSI$ of $\approx 3 \%$ (e.g. Shapiro et al. 2011, Scafetta&Willson 2014)
- From ERBS (Willson&Mordvinov, 2003): $\delta TSI \approx 1\%$ over the 80s and 90s
- When solar anomaly responsible for cloud changes:
 - > contributes to direct solar heating with same feedbacks as *GH*-gases
 - > additionally amplified by solar cloud changes
 - ⇒ Solar Induced Cloud Feedback (SICF)
 - \Rightarrow Solar Sensitivity S_S = 0.17 ° C for 1‰ TSI variation

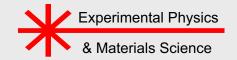


- **Total Temperature Balance:**
 - Solar warming over last century:

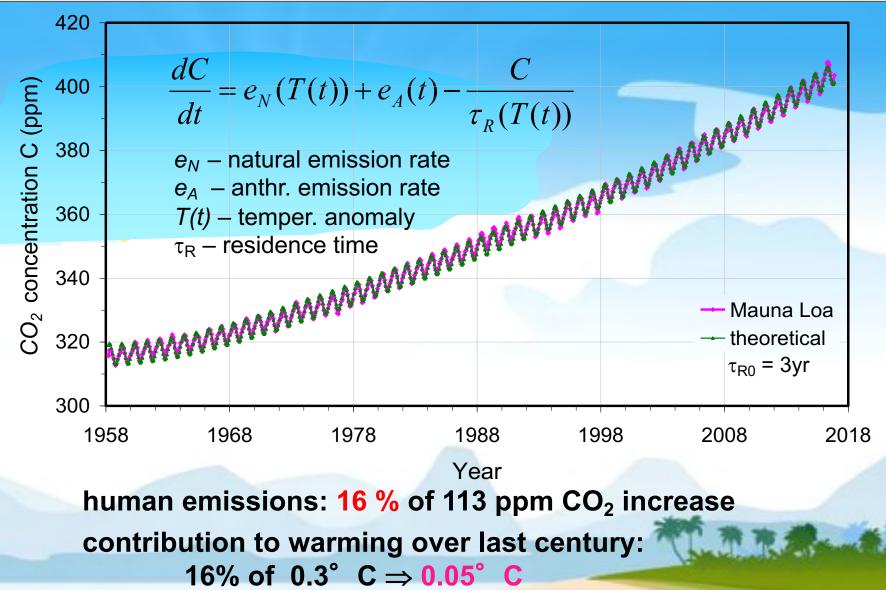

for solar anomaly $\Delta TSI = 2.6\% \rightarrow \Delta T_{Sun} = \Delta TSI \times S_S = 0.44^{\circ} C \rightarrow 60\%$


- CO_2 warming over last century: 100 ppm CO_2 at $ECS = 0.70^{\circ} C \rightarrow \Delta T_{CO2} = 0.30^{\circ} C \rightarrow 40\%$
- **Full agreement with observed temperature increase:** 0.74° C
- Full agreement with observed cloud cover changes



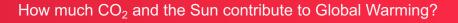


CO₂ increase over Industrial Era man-made?



CO₂ increase over Industrial Era man-made? Air temperature at Mauna Loa, anthr. emissions from CDIAC

19



Summary

20

- Detailed LBL-radiation transfer calculations for the absorptivities and back-radiation of the greenhouse gases H_2O , CO_2 , CH_4 and O_3 in the atmosphere
- Two-layer climate model especially appropriate to calculate the influence of an increasing CO₂-concentration, and a varying solar activity on global warming
- We consider all relevant feedback processes: water vapor, lapse-rate, surface albedo, convection and evaporation
- Influence of clouds with thermally and solar induced feedback
- Equilibrium climate sensitivity ECS = 0.7 ° C almost 5 times smaller than IPCC value
- Dominant warming over last century caused by the Sun with 0.44 ° C (60%)
- CO_2 only contributes to 0.3 ° C (40%)
- With 16% human CO_2 emissions \rightarrow anthropogenic contribution to warming is $0.05^{\circ} C$

